Electronic Medical Records and Genomics: Possibilities, Realities, Ethical Issues to Consider

Daniel Masys, M.D.
Affiliate Professor
Biomedical and Health Informatics
University of Washington, Seattle
Possibilities:
the world of personalized health and healthcare
The Human Genome Project:
Draft sequence completed 2000
$3,000,000,000
15 years
The Vision

- Molecular and clinical biomarkers for health conditions individuals either have or are susceptible to
 - Includes traditional healthcare history, physical findings, diagnostic imaging, standard clinical laboratories
 - Increasingly: large volumes of molecular data
 - Structural genomics: DNA in residence (~22,000 genes)
 - Functional genomics: genes switched on (1-2% active)
 - Proteomics (400,000 proteins from 22,000 genes)
The Vision, cont’d

- Pharmacogenomics
 - “The right dose of the right drug for the right patient at the right time”
- Drug development:
 - Avoid drugs likely to cause side effects
 - Re-investigate “back-burner” drugs
 - Develop entirely new drugs targeting fundamental disease processes

“Here’s my sequence…”

New Yorker, 2000
The Genome Sequence is at hand...so?

“The good news is that we have the human genome. The bad news is it’s just a parts list”
Company announces low-cost DNA decoding machine

NEW YORK – A biotechnology company announced it has developed a machine to decode a person’s DNA in a day for $1,000, a long-sought price goal for making a person's genome useful for medical care.

Life Technologies Corp. said Tuesday it was taking orders for the technology, which it expects to deliver in about a year. The Carlsbad, Calif., company said three major research institutions had already signed up for the $149,000 machine: the Baylor College of Medicine, the Yale School of Medicine and the Broad Institute of Cambridge, Mass.

The machine is a sequencer, meaning that it lets scientists identify the sequence of the 3 billion chemical building blocks that make up a person’s DNA. Since the...
Realities - 2012

Electronic Medical Records have already proven themselves to be a *essential bidirectional channel* for DNA-enabled healthcare and for advancing health sciences.
Example of current operational “genomic EMR” system: Vanderbilt PREDICT project

Pharmacogenomic Resource for Enhanced Decisions In Care and Treatment. Go-live date: September 2010

- Literature
- Guidance: Professional societies, FDA

Replicate DNA association effect in local biobank

Evidence review by P&T sub-committee

Implementation

Prospective Genotyping: (e.g. Illumina ADME panel)

- Drug-genotype pair in EMR
- Other genotypes outside EMR
- Point of care decision support

Follow outcomes
- Is dose changed?
- Are outcomes affected?
- What do patients think?
As seen by providers at the moment of prescribing:

Clopidogrel Poor Metabolizer Rules

Genetic testing has been performed and indicates this patient is at risk for inadequate anti-platelet response to clopidogrel (Plavix) therapy.

This patient has been tested for CYP2C19 variants, and the presence of the *2/*2 genotype has identified this patient as a poor metabolizer of clopidogrel. Poor metabolizers treated with clopidogrel at normal doses exhibit higher rates of stent thrombosis/other cardiovascular events.

Treatment modification is recommended:
- Prescribe prasugrel (EFFIENT) 10mg daily and stop clopidogrel (Plavix) startdate, 10 AM

Due to increased risk of bleeding, prasugrel should not be given to patients:
- Those with a history of stroke or transient ischemic attack
- Those aged greater than 75 years of age
- Those whose body weight is less than 60 kg

If prasugrel (EFFIENT) not selected, please choose desired action:
- Increase maintenance dose of clopidogrel (Plavix) 100 mg daily, startdate, 10 AM
- Maintain requested daily dose of clopidogrel (Plavix) 75 mg daily, startdate, 10 AM

NOTE: The Vanderbilt P&T Committee has recommended that prasugrel (if not contraindicated) should replace clopidogrel for poor metabolizers; if this is not possible consider doubling the standard dose of clopidogrel (or, use standard dose clopidogrel). However, there is not a national consensus on drug dose guidance in this population.
Electronic Medical Record genomic data as viewed by providers

StarTracker Conditions/Diseases: No Tracked Conditions

*** notation indicates test is due for repeat and value may be outdated.***

<table>
<thead>
<tr>
<th>Preventive</th>
<th>BP</th>
<th>BMI</th>
<th>eGFR</th>
<th>HCT</th>
<th>FLUVAX</th>
<th>CRC</th>
<th>Mammogram</th>
<th>PAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>143/72</td>
<td>31.7</td>
<td>52</td>
<td>33</td>
<td>NONE</td>
<td>NONE</td>
<td>UNKNOWN</td>
<td>UNKNOWN</td>
</tr>
<tr>
<td>SMOKE</td>
<td>UNKNOWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patient-specific guidelines

General Information:

PCP:
Primary cardiologist:

Significant Medical Diagnoses and Conditions:

1. Coronary atherosclerotic heart disease
 a. NonSTMI 01/2010
 b. Coronary intervention 1/12/2010
 (1) Xience 3x23 drug eluting stent to RCA
 c. Coronary intervention 2/17/2010
 (1) two 2.5x28 and 2.25x18 Cypher DES to LAD and diagonal
 d. Coronary intervention 4/6/2010

Adverse and Allergic Drug Reactions:
- penicillin (class) (rash)
- cephalaxin (rash)

Drug Genome Interactions: (12/21/10 08:02)
- clopidogrel sensitivity: POOR METABOLIZER, REDUCED ANTI-PLATELET EFFECT - gene: CYP2C19 - gene result: *2/*2

Medications:
- prepar to print
- print and give pt
- Show Hx of medications

Drug/Herb Interactions:
- aspirin 325 mg orally once daily, in the morning
- prasugrel (effient) 10 mg orally once daily
- carvedilol 6.25 mg orally twice daily with meals
- lisinopril 10 mg orally once daily
- furosemide 40 mg orally once daily
Genomic data as viewed by patients
Genes that affect my medicines QAPATIENTE, GREEN beth.dunaway@vanderbilt.edu

This test examines your gene known as CYP2C19 (sounds like "sip-2-C-19"). CYP2C19 can affect your response to a drug called clopidogrel (sounds like "kluh-PID-oh-grel"). Clopidogrel has the brand name Plavix. Clopidogrel is used to help prevent harmful blood clots from developing, such as for people who have had a recent heart attack, or a stroke.

CYP2C19 Results: Your result is *1/*2. This means you may not respond as well to clopidogrel.

Many factors, including this test, help your doctor decide if taking clopidogrel is right for you.
EMR data is advancing genomic health science: PheWAS: PHEnome Wide Association Studies

- GWAS: pick a phenotype → interrogate the set of all genetic polymorphisms for association
- PheWAS: pick a genotype → interrogate the set of all phenotypes (diseases) as recorded in EMR

rs17234657
Alzheimer’s
Carotid artery disease
Statin-related myopathy

Low HDL
Cataracts

Myocardial infarction
Peripheral vascular disease

Type II diabetes
Asthma

Group Health and UW, Seattle
Mayo Clinic
Marshfield Clinic
Northwestern
Geisinger
Mt. Sinai

QRS duration

Coordinating center
Realities of 2012

• Our ability to acquire person-specific DNA data far exceeds our understanding of its meaning
• Genetic data conclusively explains the basis for only a tiny set of the 8000+ diseases of humans and responses to therapy
• As a result DNA data acquired now will likely need to be re-interpreted many times over in the future as DNA science unfolds
General observations about clinical genomics

• Genomic data is the current poster child for complexity in healthcare
• No practitioner can absorb and remember more than a tiny fraction of the knowledge base of human variation
• Therefore, computerized clinical decision support is the only effective way to insert genomic variation-based guidance into clinical care
Current state of EMR and decision support infrastructure

• Only 1.5% of US hospitals have full adoption of a comprehensive EMR*

• Only 17% of hospitals have computerized provider order entry (point for decision support alerts and reminders)*

Issues to consider

1. Is it ethical to allow healthcare providers to continue to practice without a systems infrastructure for decision support?
The Need for Computerized Patient-Specific Decision Support

Decisions by clinical phenotype
i.e., traditional health care

1990 2000 2010 2020

Human Cognitive Capacity

Proteomics and other effector molecules
Functional Genetics:
Gene expression profiles
Structural Genetics:
e.g. SNPs, haplotypes
Issues to consider

1. Is it ethical to allow healthcare providers to continue to practice without a systems infrastructure for decision support?
2. Is it ethical to discard person-specific DNA data that currently has uncertain or unknown significance?
Most common current method for delivery of genotyping into clinical operations (discards DNA data obtained that has no demonstrated clinical relevance)

<table>
<thead>
<tr>
<th>Name:</th>
<th>Sex:</th>
<th>Laboratory Number:</th>
<th>VUH#:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Referral Source: Dr. Kim Ely

Reason for Request: DNA Analysis for KRAS Mutations

Type of Specimen: Paraffin-Embedded Tissue (Block #: [Redacted])

Date Received: 2/12/10

Date of Report: 2/18/10

Interpretation: KRAS Mutation NOT Detected

The KRAS gene (12p12) is a member of the Ras family of proto-oncogenes, and encodes a protein containing guanosine nucleotide triphosphate hydrolysis activity (known more commonly as a GTPase). These proteins are active when bound to guanosine triphosphate (GTP) and inactive when bound to guanosine diphosphate (GDP). KRAS is membrane bound, is activated by growth factor receptors, and through BRAF, stimulates the MAPK/ERK pathway resulting in transcription and cell proliferation. KRAS mutations are observed in colon cancer (40-50%), lung cancer (20-30%) and pancreatic cancers (90%). Conserved missense mutations in codons 12 and 13 result in prolonged binding of GTP and constitutive activation of RAS proteins, thereby leading to uncontrolled cell proliferation.

Progressive and/or metastatic non-small cell lung adenocarcinomas are often treated with inhibitors of the EGFR receptor as a second line therapy. However, it has been shown that tumors, which harbor mutations in codons 12 and 13 of KRAS, respond poorly to EGFR inhibitors, as they are not constitutively activated and do not need to be inhibited for response to therapy.

The vast majority of KRAS mutations are seen in exons 2 and 3, with less common mutations in exons 4 and 5. In this instance, the sample was tested for mutations in exons 2, 3 and 4.
Issues to consider

1. Is it ethical to allow healthcare providers to continue to practice without a systems infrastructure for decision support?
2. Is it ethical to discard person-specific DNA data that currently has uncertain or unknown significance?
3. How does ‘genomic consent’ differ from standard consent for healthcare services?
How do terms of consent change...

• When a person lacks basic ‘genetic health literacy’?

• When a health condition does not currently exist but may in the future?
 – Treatable vs. (currently) non-treatable conditions

• When a health condition has implications only for one’s offspring, not self
 – And the literacy and health preferences of one’s heirs is different than one’s own

• For incidental findings vs. disease-specific testing?