The President's Council on Bioethics click here to skip navigation


Human Cloning and Human Dignity:
An Ethical Inquiry

Table of Contents

The President's Council on Bioethics
Washington, D.C.
July 2002

Executive Summary

For the past five years, the prospect of human cloning has been the subject of considerable public attention and sharp moral debate, both in the United States and around the world. Since the announcement in February 1997 of the first successful cloning of a mammal (Dolly the sheep), several other species of mammals have been cloned. Although a cloned human child has yet to be born, and although the animal experiments have had low rates of success, the production of functioning mammalian cloned offspring suggests that the eventual cloning of humans must be considered a serious possibility.

In November 2001, American researchers claimed to have produced the first cloned human embryos, though they reportedly reached only a six-cell stage before they stopped dividing and died. In addition, several fertility specialists, both here and abroad, have announced their intention to clone human beings. The United States Congress has twice taken up the matter, in 1998 and again in 2001-2002, with the House of Representatives in July 2001 passing a strict ban on all human cloning, including the production of cloned human embryos. As of this writing, several cloning-related bills are under consideration in the Senate. Many other nations have banned human cloning, and the United Nations is considering an international convention on the subject. Finally, two major national reports have been issued on human reproductive cloning, one by the National Bioethics Advisory Commission (NBAC) in 1997, the other by the National Academy of Sciences (NAS) in January 2002. Both the NBAC and the NAS reports called for further consideration of the ethical and social questions raised by cloning.

The debate over human cloning became further complicated in 1998 when researchers were able, for the first time, to isolate human embryonic stem cells. Many scientists believe that these versatile cells, capable of becoming any type of cell in the body, hold great promise for understanding and treating many chronic diseases and conditions. Some scientists also believe that stem cells derived from cloned human embryos, produced explicitly for such research, might prove uniquely useful for studying many genetic diseases and devising novel therapies. Public reaction to the prospect of cloning-for-biomedical-research has been mixed: some Americans support it for its medical promise; others oppose it because it requires the exploitation and destruction of nascent human life, which would be created solely for research purposes.

Human Cloning: What Is at Stake?

The intense attention given to human cloning in both its potential uses, for reproduction as well as for research, strongly suggests that people do not regard it as just another new technology. Instead, we see it as something quite different, something that touches fundamental aspects of our humanity. The notion of cloning raises issues about identity and individuality, the meaning of having children, the difference between procreation and manufacture, and the relationship between the generations. It also raises new questions about the manipulation of some human beings for the benefit of others, the freedom and value of biomedical inquiry, our obligation to heal the sick (and its limits), and the respect and protection owed to nascent human life.

Finally, the legislative debates over human cloning raise large questions about the relationship between science and society, especially about whether society can or should exercise ethical and prudential control over biomedical technology and the conduct of biomedical research. Rarely has such a seemingly small innovation raised such big questions.

The Inquiry: Our Point of Departure

As Members of the President's Council on Bioethics, we have taken up the larger ethical and social inquiry called for in the NBAC and NAS reports, with the aim of advancing public understanding and informing public policy on the matter. We have attempted to consider human cloning (both for producing children and for biomedical research) within its larger human, technological, and ethical contexts, rather than to view it as an isolated technical development. We focus first on the broad human goods that it may serve as well as threaten, rather than on the immediate impact of the technique itself. By our broad approach, our starting on the plane of human goods, and our open spirit of inquiry, we hope to contribute to a richer and deeper understanding of what human cloning means, how we should think about it, and what we should do about it.

On some matters discussed in this report, Members of the Council are not of one mind. Rather than bury these differences in search of a spurious consensus, we have sought to present all views fully and fairly, while recording our agreements as well as our genuine diversity of perspectives, including our differences on the final recommendations to be made. By this means, we hope to help policymakers and the general public appreciate more thoroughly the difficulty of the issues and the competing goods that are at stake.

Fair and Accurate Terminology

There is today much confusion about the terms used to discuss human cloning, regarding both the activity involved and the entities that result. The Council stresses the importance of striving not only for accuracy but also for fairness, especially because the choice of terms can decisively affect the way questions are posed, and hence how answers are given. We have sought terminology that most accurately conveys the descriptive reality of the matter, in order that the moral arguments can then proceed on the merits. We have resisted the temptation to solve the moral questions by artful redefinition or by denying to some morally crucial element a name that makes clear that there is a moral question to be faced.

On the basis of (1) a careful analysis of the act of cloning, and its relation to the means by which it is accomplished and the purposes it may serve, and (2) an extensive critical examination of alternative terminologies, the Council has adopted the following definitions for the most important terms in the matter of human cloning:

  • Cloning: A form of reproduction in which offspring result not from the chance union of egg and sperm (sexual reproduction) but from the deliberate replication of the genetic makeup of another single individual (asexual reproduction).

  • Human cloning: The asexual production of a new human organism that is, at all stages of development, genetically virtually identical to a currently existing or previously existing human being. It would be accomplished by introducing the nuclear material of a human somatic cell (donor) into an oocyte (egg) whose own nucleus has been removed or inactivated, yielding a product that has a human genetic constitution virtually identical to the donor of the somatic cell. (This procedure is known as "somatic cell nuclear transfer," or SCNT). We have declined to use the terms "reproductive cloning" and "therapeutic cloning." We have chosen instead to use the following designations:

  • Cloning-to-produce-children: Production of a cloned human embryo, formed for the (proximate) purpose of initiating a pregnancy, with the (ultimate) goal of producing a child who will be genetically virtually identical to a currently existing or previously existing individual.

  • Cloning-for-biomedical-research: Production of a cloned human embryo, formed for the (proximate) purpose of using it in research or for extracting its stem cells, with the (ultimate) goals of gaining scientific knowledge of normal and abnormal development and of developing cures for human diseases.

  • Cloned human embryo: (a) A human embryo resulting from the nuclear transfer process (as contrasted with a human embryo arising from the union of egg and sperm). (b) The immediate (and developing) product of the initial act of cloning, accomplished by successful SCNT, whether used subsequently in attempts to produce children or in biomedical research.

Scientific Background

Cloning research and stem cell research are being actively investigated and the state of the science is changing rapidly; significant new developments could change some of the interpretations in our report. At present, however, a few general points may be highlighted.

  • The technique of cloning. The following steps have been used to produce live offspring in the mammalian species that have been successfully cloned. Obtain an egg cell from a female of a mammalian species. Remove its nuclear DNA, to produce an enucleated egg. Insert the nucleus of a donor adult cell into the enucleated egg, to produce a reconstructed egg. Activate the reconstructed egg with chemicals or electric current, to stimulate it to commence cell division. Sustain development of the cloned embryo to a suitable stage in vitro, and then transfer it to the uterus of a female host that has been suitably prepared to receive it. Bring to live birth a cloned animal that is genetically virtually identical (except for the mitochondrial DNA) to the animal that donated the adult cell nucleus.

  • Animal cloning: low success rates, high morbidity. At least seven species of mammals (none of them primates) have been successfully cloned to produce live births. Yet the production of live cloned offspring is rare and the failure rate is high: more than 90 percent of attempts to initiate a clonal pregnancy do not result in successful live birth. Moreover, the live-born cloned animals suffer high rates of deformity and disability, both at birth and later on. Some biologists attribute these failures to errors or incompleteness of epigenetic reprogramming of the somatic cell nucleus.

  • Attempts at human cloning. At this writing, it is uncertain whether anyone has attempted cloning-to-produce-children (although at least one physician is now claiming to have initiated several active clonal pregnancies, and others are reportedly working on it). We do not know whether a transferred cloned human embryo can progress all the way to live birth.

  • Stem cell research. Human embryonic stem cells have been isolated from embryos (produced by IVF) at the blastocyst stage or from the germinal tissue of fetuses. Human adult stem (or multipotent) cells have been isolated from a variety of tissues. Such cell populations can be differentiated in vitro into a number of different cell types, and are currently being studied intensely for their possible uses in regenerative medicine. Most scientists working in the field believe that stem cells (both embryonic and adult) hold great promise as routes toward cures and treatments for many human diseases and disabilities. All stem cell research is at a very early stage, and it is too soon to tell which approaches will prove most useful, and for which diseases.

  • The transplant rejection problem. To be effective as long-term treatments, cell transplantation therapies will have to overcome the immune rejection problem. Cells and tissues derived from adult stem cells and returned to the patient from whom they were taken would not be subject (at least in principle) to immune rejection.

  • Stem cells from cloned embryos. Human embryonic stem cell preparations could potentially be produced by using somatic cell nuclear transfer to produce a cloned human embryo, and then taking it apart at the blastocyst stage and isolating stem cells. These stem cells would be genetically virtually identical to cells from the nucleus donor, and thus could potentially be of great value in biomedical research. Very little work of this sort has been done to date in animals, and there are as yet no published reports of cloned human embryos grown to the blastocyst stage. Although the promise of such research is at this time unknown, most researchers believe it will yield very useful and important knowledge, pointing toward new therapies and offering one of several possible routes to circumvent the immune rejection problem. Although some experimental results in animals are indeed encouraging, they also demonstrate some tendency even of cloned stem cells to stimulate an immune response.

  • The fate of embryos used in research. All extractions of stem cells from human embryos, cloned or not, involve the destruction of these embryos.

The Ethics of Cloning-to-Produce-Children

Two separate national-level reports on human cloning (NBAC, 1997; NAS, 2002) concluded that attempts to clone a human being would be unethical at this time due to safety concerns and the likelihood of harm to those involved. The Council concurs in this conclusion. But we have extended the work of these distinguished bodies by undertaking a broad ethical examination of the merits of, and difficulties with, cloning-to-produce-children.

Cloning-to-produce-children might serve several purposes. It might allow infertile couples or others to have genetically-related children; permit couples at risk of conceiving a child with a genetic disease to avoid having an afflicted child; allow the bearing of a child who could become an ideal transplant donor for a particular patient in need; enable a parent to keep a living connection with a dead or dying child or spouse; or enable individuals or society to try to "replicate" individuals of great talent or beauty. These purposes have been defended by appeals to the goods of freedom, existence (as opposed to nonexistence), and well-being – all vitally important ideals.

A major weakness in these arguments supporting cloning-to-produce-children is that they overemphasize the freedom, desires, and control of parents, and pay insufficient attention to the well-being of the cloned child-to-be. The Council holds that, once the child-to-be is carefully considered, these arguments are not sufficient to overcome the powerful case against engaging in cloning-to-produce-children.

First, cloning-to-produce-children would violate the principles of the ethics of human research. Given the high rates of morbidity and mortality in the cloning of other mammals, we believe that cloning-to-produce-children would be extremely unsafe, and that attempts to produce a cloned child would be highly unethical. Indeed, our moral analysis of this matter leads us to conclude that this is not, as is sometimes implied, a merely temporary objection, easily removed by the improvement of technique. We offer reasons for believing that the safety risks might be enduring, and offer arguments in support of a strong conclusion: that conducting experiments in an effort to make cloning-to-produce-children less dangerous would itself be an unacceptable violation of the norms of research ethics. There seems to be no ethical way to try to discover whether cloning-to-produce-children can become safe, now or in the future.

If carefully considered, the concerns about safety also begin to reveal the ethical principles that should guide a broader assessment of cloning-to-produce-children: the principles of freedom, equality, and human dignity. To appreciate the broader human significance of cloning-to-produce-children, one needs first to reflect on the meaning of having children; the meaning of asexual, as opposed to sexual, reproduction; the importance of origins and genetic endowment for identity and sense of self; the meaning of exercising greater human control over the processes and "products" of human reproduction; and the difference between begetting and making. Reflecting on these topics, the Council has identified five categories of concern regarding cloning-to-produce-children. (Different Council Members give varying moral weight to these different concerns.)

  • Problems of identity and individuality. Cloned children may experience serious problems of identity both because each will be genetically virtually identical to a human being who has already lived and because the expectations for their lives may be shadowed by constant comparisons to the life of the "original."

  • Concerns regarding manufacture. Cloned children would be the first human beings whose entire genetic makeup is selected in advance. They might come to be considered more like products of a designed manufacturing process than "gifts" whom their parents are prepared to accept as they are. Such an attitude toward children could also contribute to increased commercialization and industrialization of human procreation.

  • The prospect of a new eugenics. Cloning, if successful, might serve the ends of privately pursued eugenic enhancement, either by avoiding the genetic defects that may arise when human reproduction is left to chance, or by preserving and perpetuating outstanding genetic traits, including the possibility, someday in the future, of using cloning to perpetuate genetically engineered enhancements.

  • Troubled family relations. By confounding and transgressing the natural boundaries between generations, cloning could strain the social ties between them. Fathers could become "twin brothers" to their "sons"; mothers could give birth to their genetic twins; and grandparents would also be the "genetic parents" of their grandchildren. Genetic relation to only one parent might produce special difficulties for family life.

  • Effects on society. Cloning-to-produce-children would affect not only the direct participants but also the entire society that allows or supports this activity. Even if practiced on a small scale, it could affect the way society looks at children and set a precedent for future nontherapeutic interventions into the human genetic endowment or novel forms of control by one generation over the next. In the absence of wisdom regarding these matters, prudence dictates caution and restraint.
Conclusion: For some or all of these reasons, the Council is in full agreement that cloning-to-produce-children is not only unsafe but also morally unacceptable, and ought not to be attempted.

The Ethics of Cloning-for-Biomedical-Research

Ethical assessment of cloning-for-biomedical-research is far more vexing. On the one hand, such research could lead to important knowledge about human embryological development and gene action, both normal and abnormal, ultimately resulting in treatments and cures for many dreaded illnesses and disabilities. On the other hand, the research is morally controversial because it involves the deliberate production, use, and ultimate destruction of cloned human embryos, and because the cloned embryos produced for research are no different from those that could be implanted in attempts to produce cloned children. The difficulty is compounded by what are, for now, unanswerable questions as to whether the research will in fact yield the benefits hoped for, and whether other promising and morally nonproblematic approaches might yield comparable benefits. The Council, reflecting the differences of opinion in American society, is divided regarding the ethics of research involving (cloned) embryos. Yet we agree that all parties to the debate have concerns vital to defend, vital not only to themselves but to all of us. No human being and no society can afford to be callous to the needs of suffering humanity, or cavalier about the treatment of nascent human life, or indifferent to the social effects of adopting one course of action rather than another.

To make clear to all what is at stake in the decision, Council Members have presented, as strongly as possible, the competing ethical cases for and against cloning-for-biomedical-research in the form of first-person attempts at moral suasion. Each case has tried to address what is owed to suffering humanity, to the human embryo, and to the broader society. Within each case, supporters of the position in question speak only for themselves, and not for the Council as a whole.

A. The Moral Case for Cloning-for-Biomedical-Research

The moral case for cloning-for-biomedical-research rests on our obligation to try to relieve human suffering, an obligation that falls most powerfully on medical practitioners and biomedical researchers. We who support cloning-for-biomedical-research all agree that it may offer uniquely useful ways of investigating and possibly treating many chronic debilitating diseases and disabilities, providing aid and relief to millions. We also believe that the moral objections to this research are outweighed by the great good that may come from it. Up to this point, we who support this research all agree. But we differ among ourselves regarding the weight of the moral objections, owing to differences about the moral status of the cloned embryo. These differences of opinion are sufficient to warrant distinguishing two different moral positions within the moral case for cloning-for-biomedical-research:

Position Number One. Most Council Members who favor cloning-for-biomedical-research do so with serious moral concerns. Speaking only for ourselves, we acknowledge the following difficulties, but think that they can be addressed by setting proper boundaries.

  • Intermediate moral status. While we take seriously concerns about the treatment of nascent human life, we believe there are sound moral reasons for not regarding the embryo in its earliest stages as the moral equivalent of a human person. We believe the embryo has a developing and intermediate moral worth that commands our special respect, but that it is morally permissible to use early-stage cloned human embryos in important research under strict regulation.

  • Deliberate creation for use. We believe that concerns over the problem of deliberate creation of cloned embryos for use in research have merit, but when properly understood should not preclude cloning-for-biomedical-research. These embryos would not be "created for destruction," but for use in the service of life and medicine. They would be destroyed in the service of a great good, and this should not be obscured.

  • Going too far. We acknowledge the concern that some researchers might seek to develop cloned embryos beyond the blastocyst stage, and for those of us who believe that the cloned embryo has a developing and intermediate moral status, this is a very real worry. We approve, therefore, only of research on cloned embryos that is strictly limited to the first fourteen days of development – a point near when the primitive streak is formed and before organ differentiation occurs.

  • Other moral hazards. We believe that concerns about the exploitation of women and about the risk that cloning-for-biomedical-research could lead to cloning-to-produce-children can be adequately addressed by appropriate rules and regulations. These concerns need not frighten us into abandoning an important avenue of research.

Position Number Two. A few Council Members who favor cloning-for-biomedical-research do not share all the ethical qualms expressed above. Speaking only for ourselves, we hold that this research, at least for the purposes presently contemplated, presents no special moral problems, and therefore should be endorsed with enthusiasm as a potential new means of gaining knowledge to serve humankind. Because we accord no special moral status to the early-stage cloned embryo and believe it should be treated essentially like all other human cells, we believe that the moral issues involved in this research are no different from those that accompany any biomedical research. What is required is the usual commitment to high standards for the quality of research, scientific integrity, and the need to obtain informed consent from donors of the eggs and somatic cells used in nuclear transfer.

B. The Moral Case against Cloning-for-Biomedical-Research

The moral case against cloning-for-biomedical-research acknowledges the possibility – though purely speculative at the moment – that medical benefits might come from this particular avenue of experimentation. But we believe it is morally wrong to exploit and destroy developing human life, even for good reasons, and that it is unwise to open the door to the many undesirable consequences that are likely to result from this research. We find it disquieting, even somewhat ignoble, to treat what are in fact seeds of the next generation as mere raw material for satisfying the needs of our own. Only for very serious reasons should progress toward increased knowledge and medical advances be slowed. But we believe that in this case such reasons are apparent.

  • Moral status of the cloned embryo. We hold that the case for treating the early-stage embryo as simply the moral equivalent of all other human cells (Position Number Two, above) is simply mistaken: it denies the continuous history of human individuals from the embryonic to fetal to infant stages of existence; it misunderstands the meaning of potentiality; and it ignores the hazardous moral precedent that the routinized creation, use, and destruction of nascent human life would establish. We hold that the case for according the human embryo "intermediate and developing moral status" (Position Number One, above) is also unconvincing, for reasons both biological and moral. Attempts to ground the limited measure of respect owed to a maturing embryo in certain of its developmental features do not succeed, and the invoking of a "special respect" owed to nascent human life seems to have little or no operative meaning if cloned embryos may be created in bulk and used routinely with impunity. If from one perspective the view that the embryo seems to amount to little may invite a weakening of our respect, from another perspective its seeming insignificance should awaken in us a sense of shared humanity and a special obligation to protect it.

  • The exploitation of developing human life. To engage in cloning-for-biomedical-research requires the irreversible crossing of a very significant moral boundary: the creation of human life expressly and exclusively for the purpose of its use in research, research that necessarily involves its deliberate destruction. If we permit this research to proceed, we will effectively be endorsing the complete transformation of nascent human life into nothing more than a resource or a tool. Doing so would coarsen our moral sensibilities and make us a different society: one less humble toward that which we cannot fully understand, less willing to extend the boundaries of human respect ever outward, and more willing to transgress moral boundaries once it appears to be in our own interests to do so.

  • Moral harm to society. Even those who are uncertain about the precise moral status of the human embryo have sound ethical-prudential reasons to oppose cloning-for-biomedical-research. Giving moral approval to such research risks significant moral harm to our society by (1) crossing the boundary from sexual to asexual reproduction, thus approving in principle the genetic manipulation and control of nascent human life; (2) opening the door to other moral hazards, such as cloning-to-produce-children or research on later-stage human embryos and fetuses; and (3) potentially putting the federal government in the novel and unsavory position of mandating the destruction of nascent human life. Because we are concerned not only with the fate of the cloned embryos but also with where this research will lead our society, we think prudence requires us not to engage in this research.

  • What we owe the suffering. We are certainly not deaf to the voices of suffering patients; after all, each of us already shares or will share in the hardships of mortal life. We and our loved ones are all patients or potential patients. But we are not only patients, and easing suffering is not our only moral obligation. As much as we wish to alleviate suffering now and to leave our children a world where suffering can be more effectively relieved, we also want to leave them a world in which we and they want to live – a world that honors moral limits, that respects all life whether strong or weak, and that refuses to secure the good of some human beings by sacrificing the lives of others.

Public Policy Options

The Council recognizes the challenges and risks of moving from moral assessment to public policy. Reflections on the "social contract" between science and society highlight both the importance of scientific freedom and the need for boundaries. We note that other countries often treat human cloning in the context of a broad area of biomedical technology, at the intersection of reproductive technology, embryo research, and genetics, while the public policy debate in the United States has treated cloning largely on its own. We recognize the special difficulty in formulating sound public policy in this area, given that the two ethically distinct matters-cloning-to-produce-children and cloning-for-biomedical-research-will be mutually affected or implicated in any attempts to legislate about either. Nevertheless, our ethical and policy analysis leads us to the conclusion that some deliberate public policy at the federal level is needed in the area of human cloning.

We reviewed the following seven possible policy options and considered their relative strengths and weaknesses: (1) Professional self-regulation but no federal legislative action ("self-regulation"); (2) A ban on cloning-to-produce-children, with neither endorsement nor restriction of cloning-for-biomedical-research ("ban plus silence"); (3) A ban on cloning-to-produce-children, with regulation of the use of cloned embryos for biomedical research ("ban plus regulation"); (4) Governmental regulation, with no legislative prohibitions ("regulation of both"); (5) A ban on all human cloning, whether to produce children or for biomedical research ("ban on both"); (6) A ban on cloning-to-produce-children, with a moratorium or temporary ban on cloning-for-biomedical-research ("ban plus moratorium"); or (7) A moratorium or temporary ban on all human cloning, whether to produce children or for biomedical research ("moratorium on both").

The Council's Policy Recommendations

Having considered the benefits and drawbacks of each of these options, and taken into account our discussions and reflections throughout this report, the Council recommends two possible policy alternatives, each supported by a portion of the Members.

Majority Recommendation: Ten Members of the Council recommend a ban on cloning-to-produce-children combined with a four-year moratorium on cloning-for-biomedical-research. We also call for a federal review of current and projected practices of human embryo research, pre-implantation genetic diagnosis, genetic modification of human embryos and gametes, and related matters, with a view to recommending and shaping ethically sound policies for the entire field. Speaking only for ourselves, those of us who support this recommendation do so for some or all of the following reasons:

  • By permanently banning cloning-to-produce-children, this policy gives force to the strong ethical verdict against cloning-to-produce-children, unanimous in this Council (and in Congress) and widely supported by the American people. And by enacting a four-year moratorium on the creation of cloned embryos, it establishes an additional safeguard not afforded by policies that would allow the production of cloned embryos to proceed without delay.

  • It calls for and provides time for further democratic deliberation about cloning-for-biomedical research, a subject about which the nation is divided and where there remains great uncertainty. A national discourse on this subject has not yet taken place in full, and a moratorium, by making it impossible for either side to cling to the status-quo, would force both to make their full case before the public. By banning all cloning for a time, it allows us to seek moral consensus on whether or not we should cross a major moral boundary (creating nascent cloned human life solely for research) and prevents our crossing it without deliberate decision. It would afford time for scientific evidence, now sorely lacking, to be gathered – from animal models and other avenues of human research – that might give us a better sense of whether cloning-for-biomedical-research would work as promised, and whether other morally nonproblematic approaches might be available. It would promote a fuller and better-informed public debate. And it would show respect for the deep moral concerns of the large number of Americans who have serious ethical objections to this research.

  • Some of us hold that cloning-for-biomedical-research can never be ethically pursued, and endorse a moratorium to enable us to continue to make our case in a democratic way. Others of us support the moratorium because it would provide the time and incentive required to develop a system of national regulation that might come into use if, at the end of the four-year period, the moratorium were not reinstated or made permanent. Such a system could not be developed overnight, and therefore even those who support the research but want it regulated should see that at the very least a pause is required. In the absence of a moratorium, few proponents of the research would have much incentive to institute an effective regulatory system. Moreover, the very process of proposing such regulations would clarify the moral and prudential judgments involved in deciding whether and how to proceed with this research.

  • A moratorium on cloning-for-biomedical-research would enable us to consider this activity in the larger context of research and technology in the areas of developmental biology, embryo research, and genetics, and to pursue a more comprehensive federal regulatory system for setting and executing policy in the entire area.

  • Finally, we believe that a moratorium, rather than a lasting ban, signals a high regard for the value of biomedical research and an enduring concern for patients and families whose suffering such research may help alleviate. It would reaffirm the principle that science can progress while upholding the community's moral norms, and would therefore reaffirm the community's moral support for science and biomedical technology.

The decision before us is of great importance. Creating cloned embryos for any purpose requires crossing a major moral boundary, with grave risks and likely harms, and once we cross it there will be no turning back. Our society should take the time to make a judgment that is well-informed and morally sound, respectful of strongly held views, and representative of the priorities and principles of the American people. We believe this ban-plus-moratorium proposal offers the best means of achieving these goals.

This position is supported by Council Members Rebecca S. Dresser, Francis Fukuyama, Robert P. George, Mary Ann Glendon, Alfonso Gómez-Lobo, William B. Hurlbut, Leon R. Kass, Charles Krauthammer, Paul McHugh, and Gilbert C. Meilaender.

Minority Recommendation: Seven Members of the Council recommend a ban on cloning-to-produce-children, with regulation of the use of cloned embryos for biomedical research. Speaking only for ourselves, those of us who support this recommendation do so for some or all of the following reasons:

  • By permanently banning cloning-to-produce-children, this policy gives force to the strong ethical verdict against cloning-to-produce-children, unanimous in this Council (and in Congress) and widely supported by the American people. We believe that a ban on the transfer of cloned embryos to a woman's uterus would be a sufficient and effective legal safeguard against the practice.

  • It approves cloning-for-biomedical-research and permits it to proceed without substantial delay. This is the most important advantage of this proposal. The research shows great promise, and its actual value can only be determined by allowing it to go forward now. Regardless of how much time we allow it, no amount of experimentation with animal models can provide the needed understanding of human diseases. The special benefits from working with stem cells from cloned human embryos cannot be obtained using embryos obtained by IVF. We believe this research could provide relief to millions of Americans, and that the government should therefore support it, within sensible limits imposed by regulation.

  • It would establish, as a condition of proceeding, the necessary regulatory protections to avoid abuses and misuses of cloned embryos. These regulations might touch on the secure handling of embryos, licensing and prior review of research projects, the protection of egg donors, and the provision of equal access to benefits.

  • Some of us also believe that mechanisms to regulate cloning-for-biomedical-research should be part of a larger regulatory program governing all research involving human embryos, and that the federal government should initiate a review of present and projected practices of human embryo research, with the aim of establishing reasonable policies on the matter.

Permitting cloning-for-biomedical-research now, while governing it through a prudent and sensible regulatory regime, is the most appropriate way to allow important research to proceed while insuring that abuses are prevented. We believe that the legitimate concerns about human cloning expressed throughout this report are sufficiently addressed by this ban-plus-regulation proposal, and that the nation should affirm and support the responsible effort to find treatments and cures that might help many who are suffering.

This position is supported by Council Members Elizabeth H. Blackburn, Daniel W. Foster, Michael S. Gazzaniga, William F. May, Janet D. Rowley, Michael J. Sandel, and James Q. Wilson.

  - The President's Council on Bioethics -  
Home Site Map Disclaimers Privacy Notice Accessibility NBAC HHS